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We consider interpolation on a finite uniform grid by means of one of the radial
basis functions (RBF) ,(r)=r# for #>0, # � 2N or ,(r)=r# ln r for # # 2N+ . For
each positive integer N, let h=N &1 and let [x i : i=1, 2, ..., (N+1)d] be the set of
vertices of the uniform grid of mesh-size h on the unit d-dimensional cube [0, 1]d.
Given f: [0, 1]d � R, let sh be its unique RBF interpolant at the grid vertices:
sh (xi)= f (xi), i=1, 2, ..., (N+1)d. For h � 0, we show that the uniform norm of
the error f &sh on a compact subset K of the interior of [0, 1]d enjoys the same
rate of convergence to zero as the error of RBF interpolation on the infinite
uniform grid hZd, provided that f is a data function whose partial derivatives in the
interior of [0, 1]d up to a certain order can be extended to Lipschitz functions on
[0, 1]d. � 1999 Academic Press

Key Words: radial basis function interpolation; local error estimates; finite
uniform grids.

1. INTRODUCTION

Motivation. Several authors (Jackson [7], Powell [13], Schaback
[16]) have expressed an interest in the accuracy of RBF interpolation on
finite uniform grids. The question suggested by Powell's work [13] is
whether these results would reproduce the high orders of accuracy that
occur on infinite uniform grids not only for the case of the multiquadric
and linear radial functions, but also for other radial basis functions that are
currently studied. We provide a positive answer to this question in
Theorem 1. In addition, for a specific class of radial basis functions,
Theorem 2 shows that one cannot expect higher local rates of accuracy for
general smooth data functions.
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Notation and Problem Description. Let d and N be positive integers and
denote h=N&1, D=[0, 1]d, JN=Zd & h&1D, Vh=hJN . Hence Vh con-
tains all the vertices of the uniform grid of mesh size h on the unit d-dimen-
sional cube D. Let f: D � R be a data function whose partial derivatives in
the interior of D up to a certain order can be extended to Lipschitz
functions on D.

For sufficiently large N, we consider interpolation to f on Vh by means
of one of the radial basis functions ,(r)=r# for #>0, # � 2N and
,(r)=r# ln r for # # 2N+ . In any of these cases, let m be the integer part of
#�2 and note that the (m+1)-st derivative of the function 8: [0, �) � R,
8(r)=,(r1�2) is strictly completely monotonic, i.e., (&1)k 8(k+m+1) (r)>0
for r>0 and k # N. Therefore, by the classical theory of Micchelli (cf.
[12, 13]), there exists a unique function sh of the form

sh (x)= :
j # JN

c j,(&x&hj&)+ ph (x), x # Rd, (1.1)

that satisfies the conditions

sh (hj)=f (hj), j # JN , (1.2)

:
j # JN

cj p(hj)=0, \p # 6m (Rd), (1.3)

where ph belongs to 6m (Rd)��the space of polynomials on Rd of total
degree not exceeding m��and & }& denotes the Euclidean norm on Rd.

The problem considered in this paper is to investigate the rate of con-
vergence of & f&sh&L�(K) to zero as h � 0, where K is any fixed compact
subset of the interior of D.

Method of Analysis. A similar problem has been considered by Powell
in [13, Sect. 9]. Namely, that work deals with the case when , is the multi-
quadric or linear radial function, d is odd, the radial translates ,(&x&hj&)
in (1.1) are replaced by ,(&h&1x& j&), while ph #0 (i.e., the polynomial
term of sh is removed and (1.3) is omitted). Powell's method relates the
error of interpolation on Vh to the error of interpolation on the infinite grid
hZd for a suitable extension f * of f to Rd. Specifically, for any fixed x in
the interior of D, we have

f (x)&sh (x)=Ih f *(x)&sh (x)+ f *(x)&Ih f *(x), (1.4)

where Ih f * is the RBF interpolant to f * on hZd (see next subsection). By
a careful analysis of the difference Ih f *(x)&sh (x) in the right-hand side of
(1.4) and by making use of the well known results concerning the error
f *(x)&Ih f *(x), Powell deduces that the left-hand side of (1.4) enjoys the
same rate of convergence to zero in the interior of D, as the error of inter-
polation on the infinite grid hZd. We present a modification of this method
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that gives the same conclusion for the problem formulated in the previous
subsection.

RBF Interpolation on the Infinite Uniform Grid. The two types of basis
functions considered in this paper are treated as Examples 5�1 and 5�3 in
the fundamental work of Buhmann [3] (see also [4]). He proves the
existence of a unique cardinal function

/(x)= :
j # Zd

+ j,(&x& j&), x # Rd, (1.5)

where +j , j # Zd, are real coefficients such that / is defined by an absolutely
convergent series and satisfies /( j)=$0 j for all j # Zd. Moreover, there
exists a maximal integer }�1 such that the interpolant

Ip(x)= :
j # Zd

p( j) /(x& j), x # Rd, (1.6)

is well defined and Ip= p for all p # 6} (Rd) (i.e., interpolation on Zd

reproduces polynomials of degree up to }). Specifically, for any , as above,
} is the least integer greater than or equal to d+#&1.

We will also need the rate of decay of / for large x. For both types of
RBFs , and for any dimension d, the bound

|/(x)|�c &x&&l, \x{0, (1.7)

is satisfied with l=2d+#, where c denotes a generic constant. In addition,
if d is odd and ,(r)=r#, # # 2N+1, or if d is even and ,(r)=r# ln r,
# # 2N+ , then / enjoys an exponential rate of decay at infinity (cf. Madych
and Nelson [10]).

A consequence of these results is that, for functions f *: Rd � R that have
continuous partial derivatives up to order }+1, with Lipschitz and�or
boundedness assumptions on some of them, the formula

Ih f *(x)= :
j # Zd

f *(hj) /(h&1x& j), x # Rd, (1.8)

defines an interpolant to f * on the scaled infinite grid hZd. Further, in
addition to the interpolation conditions

Ih f *(hj)= f *(hj), j # Zd, (1.9)

Ih f * has the property

& f *&Ih f *&L�(Rd )=O(hd+#), for h � 0. (1.10)
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The arguments that prove (1.10) are discussed in Section 2. We remark
that the above accuracy orders are known to be sharp, in the sense that
there exists a smooth function f * for which & f *&Ih f *&L�(Rd ) does not
tend to zero faster than O(hd+#) as h � 0 (cf. de Boor and Ron [2],
Buhmann [3], Jackson [6]).

The Difference Ih f *&sh . An important step in Powell's method of
analysis described above is provided by the identity

Ih f *(x)&sh (x)

=Ih ( f *&sh)(x)

= :
j # Zd

[ f *(hj)&sh (hj)] /(h&1x& j), x # D, (1.11)

which will be justified in the next section. Note that, by (1.2) and the fact
that f * is an extension of f, only the indices j � JN give a nonzero term on
the right-hand side of (1.11). Further, f * will be chosen in such a way that
supp( f *) is compact, so | f *(hj)&sh (hj)|=|sh (hj)| is satisfied for all but a
finite number of indices j # Zd. Therefore, in order to exploit the asymptotic
decay (1.7) of the cardinal function / in (1.11), we need an estimate of the
growth of |sh (x)| for &x& � �, independent of h. Specifically, by using the
variational approach of Wu and Schaback [21], we prove in Proposition 1
of the next section that, whenever , is one of the radial functions
considered in this paper, there exists {>0 with the property

|sh (x)|�cf (1+&x&){, x # Rd, (1.12)

for all sufficiently small h, where cf>0 depends on f, but not on h.

The Results. A bound of the type (1.12) and the relations between the
numbers }, l, { are the key ingredients that allow the extension of Powell's
approach to the present case.

Before stating the main result, we introduce the Lipschitz spaces
Lip(k+1, F ), where k is a nonnegative integer and F/Rd is a closed set
(see Stein [20, p. 176] for the general definition). When F/Rd is a closed
nonempty set such that F=cl(int(F )), these spaces are characterized as
follows. Lip(1, F ) is the space of bounded and Lipschitz continuous func-
tions on F. For k�1, Lip(k+1, F ) is the space of bounded continuous
functions f on F with the properties: f is of class Ck on the interior of F,
its partial derivatives �:f��x: extend to bounded continuous functions on F
for all multi-indices : such that |:|�k, and the extended functions �:f��x:

on F belong to Lip(1, F ) when |:|=k.
The reason for working with Lipschitz spaces is that we use the Whitney

theorem to extend the given data function f: D � R to f *: Rd � R and we
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need some of the partial derivatives of f * to be Lipschitz. Note also that
the boundedness requirement for the partial derivatives of f in the above
definition is superfluous when F=D.

Theorem 1. Let , be any one of the basis functions mentioned in the
second subsection and let f # Lip(}+2, D). Then for any compact subset K
of the interior of the unit d-cube D, the error of the interpolant (1.1) is
bounded by the inequality

& f&sh &L�(K)�chd+#, as h � 0, (1.13)

where c is a positive constant that depends on f and K, but not on h.

The remark after Eq. (1.10) and numerical experiments suggest that the
rate (1.13) is sharp. The following result proves this suggestion for the case
when d and , are such that the cardinal function (1.5) has an exponential
rate of decay at infinity. A proof for the remaining cases is unknown at
present.

Theorem 2. If d is odd and ,(r)=r#, # # 2N+1 or if d is even and
,(r)=r# ln r, # # 2N+ , then the order of convergence (1.13) is sharp, in the
sense that there exist a function f # Lip(}+3, D) and a compact set
K/int(D) for which the left-hand side of (1.13) does not tend to zero faster
than O(hd+#), as h � 0.

The proofs of Theorems 1 and 2 are given in Sections 2 and 3, respec-
tively. They also apply, with minor modifications, to the case when the unit
cube D is replaced by any set that is the closure of an open bounded
domain in Rd.

Comments. This work was initiated by an interest in the basis function
,: [0, �) � R, ,(r)=r2 ln r, which gives the thin plate spline (TPS) inter-
polant when d=2. In this case, our results imply the rate of convergence
O(h4) for TPS interpolation inside the unit square.

For the corresponding one dimensional interpolant using the same basis
function, Theorem 1 gives O(h3) accuracy on compact sets inside [0, 1].
This conclusion is confirmed by numerical experiments performed by the
author, which also indicate a deterioration in the order of accuracy to
O(h3�2) near the endpoints of the interval, for general smooth data func-
tions. Hence, if we want the uniform error behavior on [0, 1] to be closer
to the local one for smooth data functions, a modification of the interpola-
tion method is needed. Indeed, if we replace the (two) constraints (1.3)
with the condition that sh interpolates the end derivatives, numerical
experiments suggest that the convergence rate is improved to O(h5�2) near
the ends of the interval. These features are under current investigation.
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Note that, for d=1 and ,(r)=r2m+1, m # N, the interpolant defined by
(1.1)�(1.3) is a natural spline of degree 2m+1. Our results give the rate of
convergence O(h2m+2) in the interior of an interval, which is well known
(e.g., Atkinson [1]).

Literature. The accuracy of interpolation at a finite number of (possibly
scattered) points inside D by means of the radial basis functions considered
in this article has been the subject of much research, as illustrated by the
papers of Duchon [5], Wu and Schaback [21], Powell [14], Schaback
[17, 18], Johnson [8, 9], for example. Using different techniques, these
papers obtain results for the uniform norm of the error on D, where D may
not be the unit cube. Therefore, due to boundary effects, it is usual for their
uniform rates of convergence to be slower than the maximal local order
O(hd+#) of Theorem 1, which is the main subject of our work. Similar
results to Theorem 1 have been also obtained by Matveev [11] for the case
of scattered interpolation points, but his methods only apply to the special
cases that form the hypothesis of Theorem 2. By contrast, our proof of
Theorem 1 covers the entire ranges of # and d.

2. PROOF OF THEOREM 1

The Extension f * of f. The method of proof that is described in the
Introduction requires the construction of a suitable extension f * of f to Rd,
which is done in two steps. Firstly, since f # Lip(}+2, D), by the Whitney
extension theorem (cf. Stein [20, Chap. VI]), there exists f� # Lip(}+2, Rd)
such that f� (x)= f (x), x # D. Secondly, we let ' # C �

0 (Rd) be a cut-off func-
tion with '(x)=1, x # D, and '(x)=0 for sufficiently large &x&. Hence
f *=' f� # Lip(}+2, Rd) satisfies

f *(x)= f (x), x # D, (2.1)

and supp( f *) is compact. Note that the extension f * is not unique.

The Order of Convergence (1.10). We recall that } is the least integer
that satisfies }�d+#&1. If f * # C}+1 (Rd) and f * has bounded } th and
(}+1)st-order partial derivatives, the property (1.10) of the error of inter-
polation to f * on hZd is proved by Buhmann [3] for all the considered
choices of , with the exception of the case when # is a positive integer and
} is even (see also [4]). In this special case, Buhmann's results imply only
that the interpolation error is at most a constant multiple of hd+# |ln h| as
h � 0. However, our conditions on f * ensure that inequality (1.10) holds
for this case too, as shown by the cancellation argument of Powell [13,
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Proof of Theorem 8.5]. Indeed, since f * # Lip(}+2, Rd), it follows that f *
satisfies in particular not only Buhmann's assumptions, but also the
hypotheses of [13, Theorem 8.5]. That theorem also requires a condition
on ,. Specifically, for all the choices of , considered by our paper, the dis-
tributional Fourier transform of �: Rd � R, �(x)=,(&x&), is given by
�� (t)=c &t&&d&# for t{0. Therefore equation (8.34) from [13] is true
when # # N+ and } is even. Hence Lemma 8.4 of [13] also holds true, and
then the proof of Theorem 8.5 in [13] gives the order of convergence
(1.10).

The Justification of (1.11). By (1.8), it suffices to prove the identity

sh (x)= :
j # Zd

sh (hj) /(h&1x& j), x # Rd, (2.2)

or, after a change of variables,

sh (hx)= :
j # Zd

sh (hj) /(x& j), x # Rd. (2.3)

Letting p= ph (h } ) in (1.6), where ph occurs in the definition (1.1), and
noting that m<}, the polynomial reproduction property shows that (2.3)
is equivalent to

sh (hx)& ph (hx)= :
j # Zd

[sh (hj)& ph (hj)] /(x& j), x # Rd. (2.4)

By (1.1), the left-hand side of (2.4) is the function

:
j # JN

cj ,(h &x& j&), x # Rd. (2.5)

When ,(r)=r#, #>0, # � 2N, homogeneity implies that (2.5) is a linear
combination of terms of the form ,(&x& j&) for j # JN . Alternatively, when
,(r)=r# ln r, # # 2N+ , (2.5) becomes

:
j # JN

cj,(h &x& j&)

= :
j # JN

cjh# &x& j&# (ln h+ln &x& j&)

=h# :
j # JN

c j,(&x& j&)+h# ln h :
j # JN

cj &x& j&#, (2.6)
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and the last sum is a polynomial of degree less than # (cf. (1.3)), which is
reproduced by interpolation on Zd, since }�d+#&1�#. Hence the
required equation (2.4) is satisfied if interpolation on the infinite grid Zd

reproduces the function ,(& } & j&), for every j # JN .
We prove this condition for the above choices of , by applying

arguments from [13, Sect. 7]. Specifically, we consider the linear space S

defined by (7.16), (7.17) of that paper. Due to Theorem 5-7 of [3], the car-
dinal function (1.5) is in S. Further, it is elementary that any choice of ,
from Section 1 satisfies inequality (7.18) of [13]. It follows that both the
arguments of Lemma 7.5 and of page 169 of [13] are valid for our choices
of ,. Thus interpolation on the infinite grid Zd reproduces the function
,(& } &k&) for every k # Zd, which completes the justification of (1.11).

The Uniform Growth of sh .

Proposition 1. Let , be one of the radial functions considered in this
paper and assume that the data function f is in the set Lip(}+2, D). Then
the RBF interpolant (1.1) satisfies (1.12), where cf is independent of h.
Specifically, recalling that m denotes the integer part of #�2, we have
{=_+(m+#)�2, where _=0 for ,(r)=r#, #>0, # � 2N, while _ can be any
positive constant for ,(r)=r# ln r, # # 2N+ .

Proof. Let n be the dimension of the space 6m (Rd) and denote by
[Pj : j=1, 2, ..., n] the monomial basis of 6m (Rd). For any set
[uj : j=1, 2, ..., n] of vectors from Rd, we define

|(u1 , u2 , ..., un)=det(Pj (ui)). (2.7)

Further, let V=[vj : j=1, 2, ..., n] be a subset of D such that interpolation
on V from the linear space 6m (Rd) has a unique solution (for example, V

may be the set of vertices of a suitable regular grid in any simplex that is
included in D��cf. [15, p. 289]). Therefore we obtain the condition

|(v1 , v2 , ..., vn){0, (2.8)

and we define |0=||(v1 , v2 , ..., vn)|>0. By the continuity of the function
| in all its arguments, there exists =>0 such that, for any subset
[uj : j=1, 2, ..., n] of Rd whose elements satisfy &u j&vj&<=, j=1, 2, ..., n,
we have ||(u1 , u2 , ..., un)|�|0 �2. In particular, for sufficiently small h,
there exists a subset [xj : j=1, 2, ..., n] of Vh , such that

&xj&vj&<=, j=1, 2, ..., n, (2.9)
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and

||(x1 , x2 , ..., xn)|�
|0

2
. (2.10)

To simplify the arguments later, denote the elements of the set
Vh"[xj : j=1, 2, ..., n] by [xj : j=n+1, n+2, ..., (N+1)d]. Moreover, we
define the Lagrange interpolation polynomials li # 6m (Rd), i=1, 2, ..., n,
which satisfy li (xj)=$ ij , i, j=1, 2, ..., n, by the expression

li (x)=
|(x1 , ..., x i&1 , x, xi+1 , ..., xn)

|(x1 , x2 , ..., xn)
,

x # Rd, i=1, 2, ..., n. (2.11)

Consequently, we can write the Lagrange representation formula

p(x)= :
n

j=1

lj (x) p(x j), p # 6m (Rd), x # Rd. (2.12)

Next, using the extension f * of f that is constructed at the beginning of
this section, we let cf * be the positive number defined by

c2
f *=

1
(2?)d |

R d
| f *@(t)|2 &t&d+# dt, (2.13)

where f *@ is the classical Fourier transform of f *. The finiteness of cf * can
be deduced from the following properties of Fourier transforms

|t+f *@(t)|=|D+f *@ (t)|�&D+f *&L1(R d ) , t # Rd, (2.14)

for a generic multi-index +. The integrand of (2.13) is in L1 (Rd) if
| f *@(t)|2 &t&d+#�c2 &t&&d&: for some positive constants c, : and for large
&t&, which amounts to

| f *@(t)| &t&d+(#+:)�2�c. (2.15)

By (2.14), this condition is true for some :>0, since d+#�2<d+#�}+1,
f * # C}+1 (Rd) and supp( f *) is compact.

Fix x # Rd "Vh . For ;i # R, i=1, 2, ..., (N+1)d, such that

p(x)= :
(N+1)d

i=1

; i p(xi), \p # 6m (Rd), (2.16)
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denote

Ex(;)=(&1)m+1 { :
(N+1)d

i=1

:
(N+1)d

j=1

;i; j ,(&xi&xj &)

&2 :
(N+1)d

i=1

;i,(&x&xi&)= . (2.17)

The positivity of expression (2.17) is a consequence of the fact that
(&1)m+1 ,(- } ) is conditionally strictly positive definite of order m+1,
for all our choices of ,. Let

P(x)=min[Ex(;)]1�2, (2.18)

where the minimum is taken over all vectors ; of (N+1)d components that
satisfy (2.16). We also define P(x)=0 when x # Vh .

We now apply a result of Wu and Schaback [21, Theorem 4]. Since sh

interpolates f * on Vh and cf * is finite, we obtain the pointwise bound

|sh (x)& f *(x)|�P(x) cf * , x # Rd. (2.19)

For each x # Rd, we choose ;i=li (x), i=1, 2, ..., n, and ; i=0, i=n+1,
n+2, ..., (N+1)d, where l i , i=1, 2, ..., n are the Lagrange polynomials
(2.11). Hence (2.16) is satisfied due to (2.12), and the definition (2.18)
implies

P2 (x)� :
n

i=1

:
n

j=1

|li (x)| |lj (x)| |,(&xi&xj&)|

+2 :
n

i=1

|li (x)| |,(&x&xi&)|. (2.20)

The last part of the proof provides an estimate of the right-hand side of
(2.20). We use (2.9)�(2.11), the continuity of the determinant function (2.7)
in each of its variables, and the fact that each li , i=1, 2, ..., n, is a polyno-
mial of degree m over Rd, to deduce the bound

|li (x)|�c(1+&x&)m, i=1, 2, ..., n, x # Rd, (2.21)

where c is independent of x and h. Further, the numbers |,(&xi&x j&)|, for
i, j=1, 2, ..., n, are bounded by the constant max[ |,(&x& y&)|: x # D,
y # D], while xi # D, i=1, 2, ..., n, and the growth of , at infinity give

|,(&x&xi &)|�c(1+&x&)#+2_, x # Rd, (2.22)
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where c is still a generic constant. The last inequality holds with _=0 for
,(r)=r#, #>0, # � 2N and with any _>0 for ,(r)=r# ln r, # # 2N+ . Con-
sequently,

P(x)�c(1+&x&)_+(m+#)�2, x # Rd, (2.23)

for some updated constant c. Since f * has compact support, relations
(2.19) and (2.23) provide the required conclusion (1.12), with the value of
{ that is specified in the statement of the proposition. K

Proof of (1.13). We now complete the proof of Theorem 1 by deducing
a suitable bound on Ih f *&sh . Since our argument for sums of the type
(1.11) is also needed twice in the proof of Theorem 2, it is synthesized in
the next result.

Proposition 2. Let K1 and K2 be two compact subsets of Rd, with
K1 /int(K2), let /: Rd � R be a function that satisfies the bound (1.7) for a
positive exponent l, let H be a monotonically decreasing sequence of positive
numbers that tends to zero, and let (gh)h # H be a family of real-valued
functions, defined on Rd, such that

| gh (x)|�c0 (1+&x&){, x # Rd, h # H, (2.24)

where c0 and { are positive constants. If { satisfies the inequality

l&{>d, (2.25)

then the condition

:
j # Zd"h&1K2

| gh (hj)| |/(h&1x& j)|=O(hl&d), (2.26)

holds uniformly for x # K1 , as h � 0.

Proof. Let 2=max[&x&: x # K1] and let $ be the distance between K1

and the boundary of K2 . By (2.24), for any j # Zd "h&1K2 and any x # K1 ,
we deduce

| gh (hj)|�c0 (1+&hj &){

�c0 (1+&x&+&hj&x&){

�c0 &hj&x&{ \1+
1+2

$ +
{

. (2.27)
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Then we can use (1.7) and (2.27) to obtain

:
j # Zd"h&1K2

| gh (hj)| |/(h&1x& j)|

�c0h{ \1+
1+2

$ +
{

:
j # Zd"h&1K2

1
&h&1x& j&l&{ . (2.28)

Moreover, there exists a constant c1>0 such that

:
j # Zd"h&1K2

1
&h&1x& j&l&{�c1 |

&t&�h&1$
&t&&l+{ dt

=c1_d |
�

r=h&1$
r&l+{+d&1 dr

=
c1_d

l&{&d \
h
$+

l&{&d

, (2.29)

where _d is the surface area of the unit sphere in Rd. The assumption (2.25)
ensures that the integrals are finite. Now (2.28) and (2.29) imply (2.26), as
required. K

The hypotheses of Proposition 2 are satisfied if we let K1=K (the com-
pact set from Theorem 1), K2=D, gh= f *&sh for all sufficiently small h,
and we let / be the cardinal function (1.5). Indeed, in this case (1.7) holds
for l=2d+#, while (2.24) is satisfied by c0=cf+& f *&L�(Rd ) , where { is
given by Proposition 1. For these values, (2.25) is true when #>0, # � 2N,
since the constant _ of (2.22) is zero in this case. Further, (2.25) is also
satisfied when # # 2N+ by choosing _ # (0, 1) for this situation. Therefore
(1.11), (1.2), Proposition 2 and l&d=d+# provide

|Ih f *(x)&sh (x)|= } :
j # Zd "h&1D

( f *&sh)(hj) /(h&1x& j)}
� :

j # Zd"h&1D

|( f *&sh)(hj)| |/(h&1x& j)|

=O(hd+#), as h � 0, (2.30)

uniformly for x # K. We now combine (1.4), (1.10) and (2.30) to obtain the
desired conclusion (1.13). This finishes the proof of Theorem 1. K

Remark. When the decay of / is exponential, Proposition 2 implies that
the sum (2.26) tends to zero faster than any power of h. This property
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allows the proof of Theorem 2 that is given in the next section. However,
the value l=2d+# in (1.7) is sufficient to establish Theorem 1 for all the
choices of , considered in this paper.

3. PROOF OF THEOREM 2

We use the method of Jackson [6, Proof of Theorem 5�10] and
Buhmann [3, Proof of Theorem 5�13], originally developed for the cases
of quasi-interpolation and interpolation, respectively, on infinite regular
grids. We note that # is an integer in Theorem 2, which implies }=d+#&1.

Suppose that the convergence rate

& f&sh &L�(K)=o(hd+#), h � 0 (3.1)

holds for all functions f # Lip(}+3, D) and all compact sets K/int(D).
Then we will deduce below the property

Ip#p for all p # 6}+1 (Rd), (3.2)

where I is the interpolation operator (1.6). Since } is the maximal degree
for reproduction of polynomials on the multi-integer grid [4], however,
Eq. (3.2) provides a contradiction that establishes Theorem 2.

Lemma 1. Let p be a homogeneous polynomial of total degree }+1 on
Rd and let K be a compact subset of the interior of D that has 1

2u as an inte-
rior point, where u=(1, 1, ..., 1)T # Zd. If assumption (3.1) is true, then the
bound

| p(x& 1
2u)|& :

j # Zd

p(hj& 1
2u) /(h&1x& j)=o(h}+1), h � 0, (3.3)

holds uniformly for x # K.

Proof. Let g(x)= p(x& 1
2u) for all x # Rd. Given a compact K/int(D),

we let M be another compact such that K/int(M) and M/int(D). Let
\ # C �

0 (Rd) be a cut-off function with the properties: 0�\(x)�1 for
x # Rd, \(x)=1 for x # M, and supp(\)/int(D). Hence the function
f: Rd � R, f (x)=\(x) g(x) is infinitely differentiable, with supp( f )/
int(D). In particular, f satisfies the properties required for the extension f
of f |D to Rd that is constructed at the beginning of Section 2, so we can let
f *= f on Rd.
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We replace K by M in assumption (3.1) for the above f. Then the proper-
ties \|M #1 and d+#=}+1 imply

| g(x)&sh (x)|=o(h}+1), h � 0, (3.4)

uniformly for x # M, where sh is the RBF interpolant to f |D on the finite
grid Vh . We let Ih f * and Ih g be the RBF interpolants to f *= f and g on
the infinite grid hZd, respectively, as given by (1.8). The exponential decay
of the cardinal function / ensures that Ih g is well defined and that
l=d+}+2 is allowed in (1.7). For this value of l, we apply Proposition 2
twice.

First, we let K1=M, K2=D and gh=sh , h>0 in Proposition 2. Then
(2.24) holds with c0=cf , the value of { being given by Proposition 1.
Further, (2.25) is also satisfied in this case, since the constant _ of (2.22)
is zero when # # 2N+1, and we choose _ # (0, 1) when # # 2N+ . Therefore
(1.11), the compact support of f * and Proposition 2 provide

|sh (x)&Ih f *(x)|=|Ih (sh& f *)(x)|

= } :
j # Zd"h&1D

sh (hj) /(h&1x& j) }
� :

j # Zd"h&1D

|sh (hj)| |/(h&1x& j)|

=O(h}+2), as h � 0, (3.5)

uniformly for x # M.
Second, let K1=K, K2=M and gh= g, h>0 (i.e., the family (gh)h>0

reduces to the single element g) in Proposition 2. Since g # 6}+1 (Rd), it
follows that (2.24) holds with {=}+1, and condition (2.25) becomes
l&{=d+1>d. Hence the properties \|M #1, 0�\�1 and another
application of Proposition 2 imply

|Ih f *(x)&Ih g(x)|=|Ih ( f *& g)(x)|

� } :
j # Zd"h&1M

[1&\(hj)] g(hj) /(h&1x& j)}
� :

j # Zd"h&1M

| g(hj)| |/(h&1x& j)|

=O(h}+2), as h � 0, (3.6)

uniformly for x # K.
Therefore (3.4)�(3.6) prove (3.3), as required. K
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We next use the following change of variables. We let y=x& 1
2u, we

work with N=2& for increasing positive integers &, and we recall h=N&1.
Then, if j # Zd and k= j&&u, we have hj& 1

2u=hk and h&1y&k=
h&1x& j. Hence (3.3) is equivalent to

}p( y)& :
k # Zd

p(hk) /(h&1y&k) }=o(h}+1), h � 0, (3.7)

uniformly for y # K& 1
2u.

Now the proof of (3.2) depends on the remark that K& 1
2u contains a

neighborhood of the origin in Rd, and on a classical homogeneity argu-
ment. Specifically, if z # Rd is fixed, then hz # K& 1

2 u for any sufficiently
small h, so (3.7) implies

}p(hz)& :
k # Zd

p(hk) /(z&k)}=o(h}+1), h � 0. (3.8)

Therefore the homogeneity of p yields

}p(z)& :
k # Zd

p(k) /(z&k)}=o(1), h � 0, (3.9)

which proves Ip(z)= p(z), because the left-hand side of (3.9) is independent
of h. Since z is arbitrary, (3.2) follows, which completes the proof of
Theorem 2.

ACKNOWLEDGMENT

I am grateful to professor M. J. D. Powell for suggesting this topic and for his constant
advice during the preparation of the manuscript.

REFERENCES

1. K. E. Atkinson, On the order of convergence of natural cubic spline interpolation, SIAM
J. Numer. Anal. 5 (1968), 89�101.

2. C. de Boor and A. Ron, Fourier analysis of the approximation power of principal
shift-invariant spaces, Constr. Approx. 8 (1992), 427�462.

3. M. D. Buhmann, ``Multivariable Interpolation Using Radial Basis Functions,'' Ph.D.
Dissertation, University of Cambridge, 1989.

4. M. D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr.
Approx. 6 (1990), 225�255.

5. J. Duchon, Sur l'erreur d'interpolation des fonctions de plusieurs variables par les
Dm-splines, RAIRO An. Num. 12, No. 4 (1978), 325�334.

256 AURELIAN BEJANCU, JR.



6. I. R. H. Jackson, ``Radial Basis Function Methods for Multivariable Approximation,''
Ph.D. Dissertation, University of Cambridge, 1988.

7. I. R. H. Jackson, Radial basis functions: A survey and new results, in ``The Mathematics
of Surfaces, III'' (D. C. Handscomb, Ed.), pp. 115�133, Oxford Univ. Press, Oxford, 1989.

8. M. Johnson, A bound on the approximation order of surface splines, Constr. Approx. 14
(1998), 429�438.

9. M. Johnson, An improved order of approximation for thin-plate spline interpolation in
the unit disc, preprint, Kuwait University, 1998.

10. W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory 60
(1990), 141�156.

11. O. V. Matveev, On a method for interpolating functions on chaotic nets, Math. Notes 62,
No. 3 (1997), 339�349; Mat. Zametki 62, No. 3 (1997), 404�417.

12. C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally
positive definite functions, Constr. Approx. 2 (1986), 11�22.

13. M. J. D. Powell, The theory of radial basis function approximation in 1990, in ``Advances
in Numerical Analysis, Vol. II, Wavelets, Subdivision Algorithms, and Radial Basis
Functions'' (W. A. Light, Ed.), pp. 105�210, Clarendon, Oxford, 1992.

14. M. J. D. Powell, The uniform convergence of thin plate spline interpolation in two
dimensions, Numer. Math. 68 (1994), 107�128.

15. M. J. D. Powell, A review of methods for multivariable interpolation at scattered data
points, in ``The State of the Art in Numerical Analysis'' (I. S. Duff and G. A. Watson,
Eds.), pp. 283�309, Clarendon, Oxford, 1997.

16. R. Schaback, Comparison of radial basis function interpolants, in ``From CAGD to
Wavelets'' (K. Jetter and F. Utreras, Eds.), pp. 293�305, World Scientific, Singapore, 1993.

17. R. Schaback, Approximation by radial basis functions with finitely many centers, Constr.
Approx. 12 (1996), 331�340.

18. R. Schaback, Improved error bounds for scattered data interpolation by radial basis
functions, Math. Comp. 68 (1999), 201�216.

20. E. M. Stein, ``Singular Integrals and Differentiability Properties of Functions,'' Princeton
Univ. Press, Princeton, 1970.

21. Z.-M. Wu and R. Schaback, Local error estimates for radial basis function interpolation
of scattered data, IMA J. Numer. Anal. 13 (1993), 13�27.

257RADIAL BASIS FUNCTION INTERPOLATION


	1. INTRODUCTION 
	2. PROOF OF THEOREM 1 
	3. PROOF OF THEOREM 2 
	ACKNOWLEDGMENT 
	REFERENCES 

